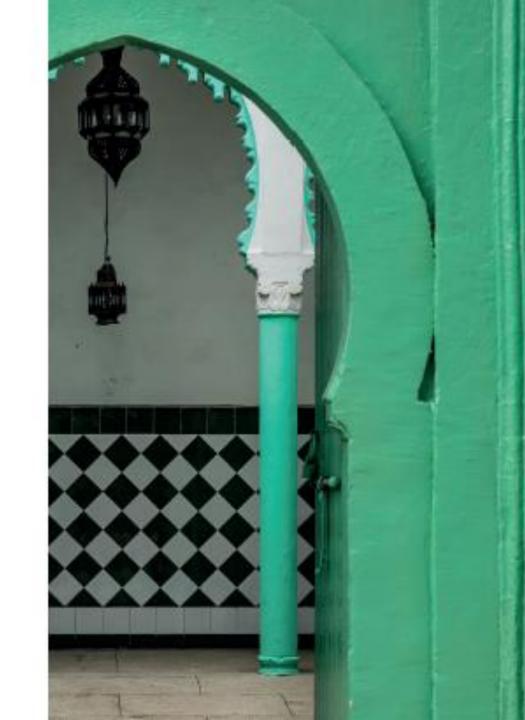
3° édition


AFRAMED

VIH / HÉPATITES

CASABLANCA

du27 sept

au 29 2019

Comorbidités et VIH : cas clinique

Dr Ikbel Kooli (Tunisie) Pr Karine Lacombe (France)

Vendredi 27 Septembre 2019

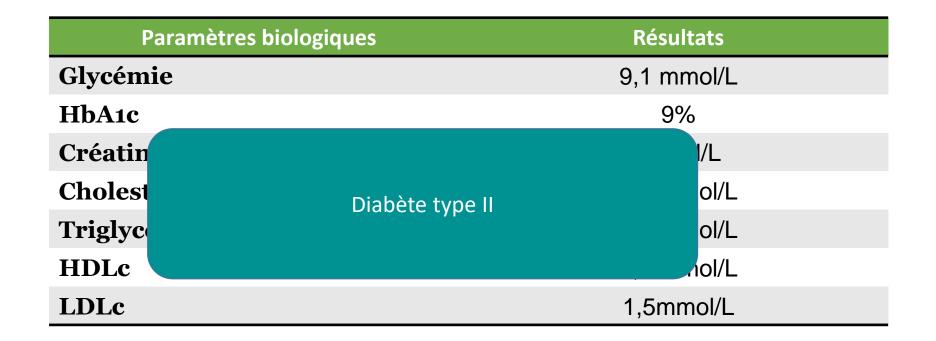
Patiente SM

-Age : 44 ans

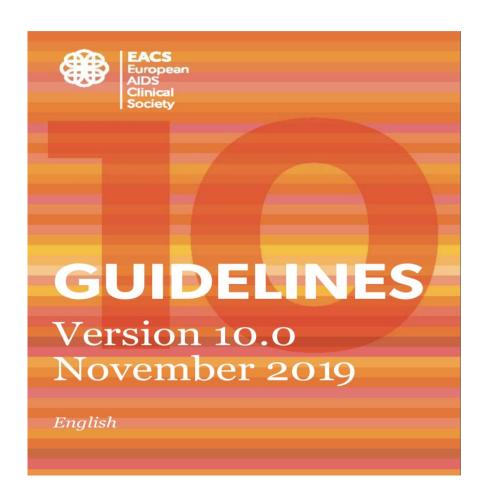
-Mariée, 3 enfants en bonne santé

-Tabac: 20PA

-Alcool: 0


ATCDs: - Infection VIH depuis 2010

- Sous combivir Kaletra
- Découverte à l'occasion d'une toxoplasmose cérébrale
- Nadir CD4: 40 /mm3, Nadir CV VIH: 5200 copies/mL
- -Dernier bilan immuno-virologique : CD4 607/mm3 , CV VIH < 20 copies/mL


Consultation du 6/7/2015 :

- Se plaint d'un syndrome polyuropolydepsique
- Biologie:

Diabète type II

Type 2 Diabetes: Diagnosis

Diagnostic criteria(i)

	Fasting plasma glucose mmol/L (mg/dL) ⁽ⁱⁱ⁾	Oral glucose tolerance test (OGTT) 2-h value mmol/L (mg/dL) ⁽ⁱⁱⁱ⁾	HbA1c ^(iv) (mmol/mol)	
Diabetes	≥ 7.0 (126) OR→	≥ 11.1 (200)	≥ 6.5% (≥ 48)	
Impaired glucose tolerance (IGT)	< 7.0 (126) AND→	7.8 – 11.0 (140-199)	Prediabetes	
Impaired fasting glucose (IFG)	5.7– 6.9 AND (100-125)	< 7.8 (140)	5.7-6.4% (39-47)	

Chez cette patiente, les facteurs favorisants le diabète sont :

- A- Son traitement antirétroviral
- B- L'infection VIH
- C- La prédisposition génetique
- D- Le nadir CD4
- E- Le nadir de charge virale

Insulino-résistance et VIH

Prevalence of insulin resistance and risk of diabetes mellitus in HIV-infected patients receiving current antiretroviral drugs

Susana Araujo, Sara Bañón, Isabel Machuca, Ana Moreno, María J Pérez-Elías and José L Casado

Department of Infectious Diseases, Ramon y Cajal Hospital, Cra. Colmenar, Km 9.1, 28034 Madrid, Spain

Table 3 Factors associated with insulin resistance (HOMA \geq 3.8).

Correspondence should be addressed to J L Casado **Email** jose.casado @salud.madrid.ora

		Univariate analysis	;	Multivariate analysis		
Variable	RR	95% CI	P value	RR	95% CI	P value
Age (year)	1.03	0.99–1.06	0.08	1.05	0.88–1.16	0.25
Gender, male	0.66	0.34-1.27	0.21			
Mean BMI (kg/m²)	1.17	1.06–1.28	< 0.01	1.03	0.76–1.5	0.87
CD4+ count nadir	1.05	0.57-1.93	0.19	1.6	0.44-5.05	0.8
Time of HIV infection (months)	1.005	1.001–1.009	0.01	1.001	0.98–1.014	0.9
Cumulative time on HAART (months)	1.007	1.002–1.012	0.01	1.002	0.99–1.02	0.75
Time on current HAART (months)	1.006	0.99–1.019	0.15	1.15	0.98–1.04	0.3
Current use of PI	2.32	1.24–4.44	< 0.01	1.49	0.39-5.88	0.56
HCV coinfection	3.03	1.64–5.88	< 0.01	2.19	0.57-8.34	0.24
Vitamin D deficiency	1.01	0.54–1.83	0.9			
Waist (cm)	1.08	1.04–1.12	< 0.01	1.04	0.92-1.17	0.49
Waist/hip ratio	12.8	1.5–19.1	< 0.01	10	1.66–16	< 0.01
Trunk fat (kg)	1.07	1.004–1.14	0.037	1.01	0.83-1.19	0.9
Trunk fat (%)	1.08	1.04–1.13	< 0.01	1.08	1.01–1.17	0.04
Total fat (%)	1.07	1.02–1.13	< 0.01	1.05	0.88–1.13	0.2
FMR	3.18	1.7–6.06	< 0.01	2.32	0.56–9.1	0.2

HAART, highly active antiretroviral therapy; PI, protease inhibitors; HCV, hepatitis C virus; FMR, fat mass ratio (defined in the text). Values with a P value of <0.2 were included into the multivariate analysis.

Insulino-résistance et VIH

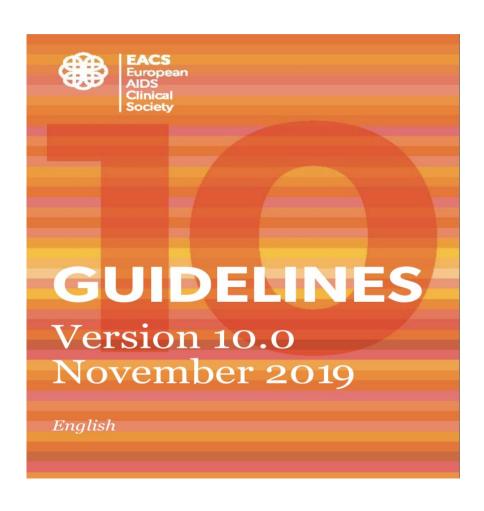
Table 2. Glycaemia, insulin resistance markers, body fat distribution and adipokine levels according to the baseline CD4+ T-cell counts in the HIV-infected patients included in the metabolic substudy of the ANRS COPANA cohort

	CD4+ T-cell counts at baseline per mm ³				
Markers	≤200 (<i>n</i> =42)	201-350 (<i>n</i> =43)	351-500 (<i>n</i> =60)	>500 (<i>n</i> =69)	P-value
T0 glucose, mmol/l	4.6 (4.2–4.9)	4.9 (4.4–5.2)	4.9 (4.4–5.3)	4.7 (4.3-5.2)	0.70
T120 glucose, mmol/l	5.3 (4.2-6.8)	5.0 (4.6–5.7)	5.1 (4.2–5.3)	4.9 (4.2–5.6)	0.17
TO insulin, mU/I	6.6 (4.8-11.0)	5.8 (4.1-8.0)	4.8 (3.7–8.5)	4.8 (3.4–7.0)	0.02
T120 insulin, mU/l	33.3 (18.7-53.6)	17.5 (7.8–25.2)	16.6 (6.7-37.6)	13.8 (9.0-24.0)	< 0.001
HOMA-IR (n=202)	1.4 (1.1–2.6)	1.3 (0.8–1.7)	1.1 (0.8–1.7)	1.0 (0.7-1.6)	0.004
SAT (n=139), cm ²	111.0 (44.2-160.8)	136.1 (98.7-213.3)	158.8 (74.4-200.5)	128.9 (84.6-190.9)	0.29
VAT (n=139), cm ²	63.2 (38.0-87.5)	70.5 (48.5-103.3)	84.2 (46.2-130.3)	60.5 (43.4-99.0)	0.31
SAT/VAT (n=139)	1.57 (1.06-2.17)	1.68 (1.26-3.35)	1.52 (1.16-2.18)	1.92 (1.33-3.86)	0.28
Total body fat (n=102), %	16.0 (9.5-33.7)	24.9 (15.3-37.1)	20.9 (14.4-28.5)	22.3 (10.0-38.4)	0.61
Trunk fat (n=102), %	18.1 (8.8-35.7)	24.1 (12.2-36.3)	22.4 (11.6-30.9)	24.7 (12.2-38.9)	0.59
Limb fat (n=102), %	13.1 (8.3-31.9)	19.0 (12.6-38.8)	18.9 (13.2-25.1)	19.3 (7.9-39.9)	0.60
HOMA-B (n=200)	115.2 (76.0-173.1)	95.1 (45.4-133.3)	84.4 (52.9-117.5)	94.3 (59.2-125.0)	0.02
Leptin, μg/l	2.7 (1.2-10.9)	4.6 (1.5-14.1)	5.3 (2.2-9.4)	3.1 (0.7-12.2)	0.15
Adiponectin, mg/l	14.5 (11.3–16.8)	15.4 (9.0-17.9)	12.7 (9.2-16.4)	14.9 (9.0-17.9)	0.58

Data are medians and 25th to 75th percentiles (IQR) unless otherwise indicated. *P*-values are adjusted for sex. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), were assessed by L4 CT scans in 139 patients. Percentage of total, trunk and limb fat were assessed by DEXA in 102 patients. HOMA-B, homeostasis model assessment of pancreatic β-cell function; HOMA-IR, homeostasis model assessment of insulin resistance.

Insulino-résistance et Antirétroviraux

HIV-associated lipodystrophy: from fat injury to premature aging


Martine Caron-Debarle^{1,2}, Claire Lagathu^{1,2}, Franck Boccara^{1,2,3}, Corinne Vigouroux^{1,2,3} and Jacqueline Capeau^{1,2,3}

Class	Molecule	Abbreviation	Lipoatrophy	Lipohypertrophy	Dyslipidemia	Insulin resistance
NRTI	Stavudine	D4T	+++	++	++	++
	Zidovudine	AZT, ZDV	++	+	+	++
	Didanosine	ddl	+/-	+/-	+	+
	Lamivudine	3TC	0	0	+	0
	Abacavir	ABC	0	0	+	0
	Tenofovir	TDF	0	0	0	0
	Emtricitabine	FTC	0	0	0	0
NNRTI	Efavirenz	EFV	+/-	+/-	++ increased HDL	+
	Nevirapine	NVP	0	0	+ increased HDL	0
PI	Ritonavir	RTV	+/-	+	+++	++
	Indinavir	IDV	+/-	+	+	+++
	Nelfinavir	NFV	+/-	+	++	+
	Lopinavir	LPV	+/-	+	++	++
	Amprenavir Fosamprenavir	APV FPV	+/-	+	+	+/-
	Saquinavir	SQV	+/-	+	+/-	+/-
	Atazanavir	ATV	0	++	+/-	0
	Darunavir	DRV	0	+	+/-	+/-
Fusion inhibitor	Enfuvirtide	T20	?	?	0	0
CCR5 inhibitor	Maraviroc	MVC	?	?	0	0
Integrase inhibitor	Raltegravir	RAL	?	?	0	0

CASABLANCA

Diabète type II

Type 2 Diabetes⁽ⁱ⁾: Management

If modification of lifestyle measures is insufficient

 \downarrow

Metformin⁽ⁱⁱ⁾ start dose (500-850 mg qd), increase to maximum tolerated dose of 2(-3) g/day over 4-6 weeks⁽ⁱⁱ⁾

HbA1c > 6.5-7% (> 48-53 mmol/mol)

 \downarrow

Metformin⁽ⁱⁱ⁾ + sulfonylureas or thiazolidinedione or DPP-4 inhibitor or SGLT-2 inhibitor or GLP-1 agonist or insulin

 \downarrow

HbA1c > 6.5-7% (> 48-53 mmol/mol)

 \downarrow

Refer to specialist for triple therapy – use insulin

Lors de son contrôle habituel le 7/4/2019 :

Examen : Poids : 89 Kg Taille 1m65. → BMI : 32,72 kg/m²

Tour de taille 110 cm

TA: 13/7 cmHg

Biologie:

Paramètres biologiques	Résultats
Glycémie	5,5 mmol/L
HbA1c	6%
ASAT/ ALAT	35UI/ 24UI/L
GGT	30 UI/L
PAL	70UI/L
Créatinine	85 mol/L
Cholesterol	6,4 mmol/L
Triglycérides	2,6 mmol/L
HDLc	0,5 mmol/L
LDLc	4,3 mmol/L

Lors de son contrôle habituel le 7/4/2019 :

Examen : Poids : 89 Kg Taille 1m65. → BMI : 32,72 kg/m²

Tour de taille 110 cm

TA: 13/7 cmHg

Biologie:

Paramètres biologiques	Résultats
Glycémie	5,5 mmol/L
HbA1c	6%
ASAT/ ALAT	35UI/ 24UI/L
GGT	30 UI/L
PAL	70UI/L
Créatinine	85 mol/L
Cholesterol	6,4 mmol/L
Triglycérides	2,6 mmol/L
HDLc	0,5 mmol/L
LDLc	4,3 mmol/L

Cette dyslipidémie est favorisée par :

- A- Le vieillissement physiologique
- B- L' âge
- C- Son traitement antirétroviral
- D- La durée d'évolution du VIH
- E- Le nadir CD4

Dyslipidémie et VIH

Research Article

Changes in Lipid Indices in HIV+ Cases on HAART

Shujing Ji 1,2 Yufan Xu, 1,2 Dating Han, 1,2 Xiuming Peng, 1,2 Xiangyun Lu, 1,2 Norbert H. Brockmeyer 1,2 and Nanping Wu 1,2

TABLE 3: Model-based estimated factors correlated with TC levels.

	estimate	Standard error	P value
Sex (male vs. female)	4.44	14.17	0.755
IFG vs. euglycemia	27.84	11.09	0.014
DM vs. euglycemia	45.41	11.80	0.000
age	0.45	0.49	0.355
nevirapine	24.79	11.07	0.028
lgVL	39.10	22.12	0.077
CD4	0.004	0.001	0.000

TC: total cholesterol; IFG: impaired fasting glucose; DM: diabetes mellitus; VL: viral load.

Shujing et al, BioMed Research International, 2019.

¹State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China

²Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China

³Department of Dermatology and Allergology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany

⁴St. Elisabeth-Hospital Ruhr-Universität Bochum Große Beckstr, 12,44787 Bochum, Germany

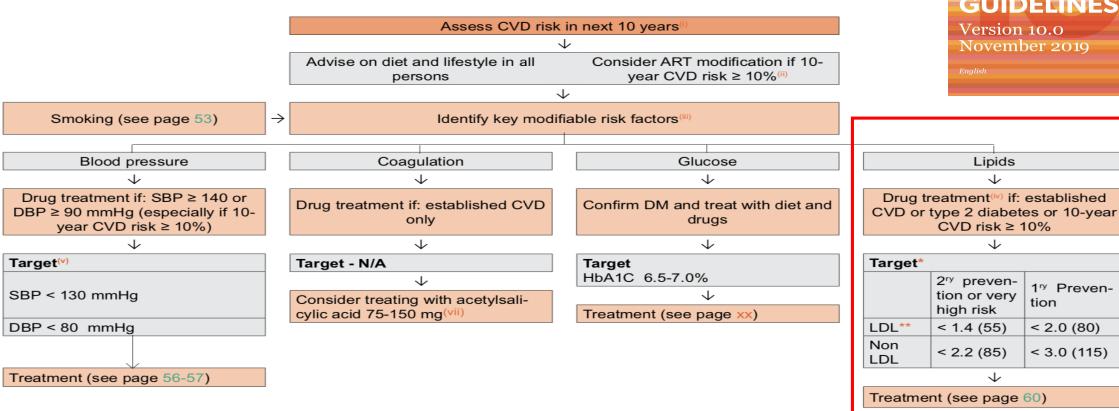
Dyslipidémie et Antirétroviraux

HIV-associated lipodystrophy: from fat injury to premature aging

Martine Caron-Debarle^{1,2}, Claire Lagathu^{1,2}, Franck Boccara^{1,2,3}, Corinne Vigouroux^{1,2,3} and Jacqueline Capeau^{1,2,3}

Class	Molecule	Abbreviation	Lipoatrophy	Lipohypertrophy	Dyslipidemia	Insulin resistance
NRTI	Stavudine	D4T	+++	++	++	++
	Zidovudine	AZT, ZDV	++	+	+	++
	Didanosine	ddl	+/-	+/-	+	+
	Lamivudine	3TC	0	0	+	0
	Abacavir	ABC	0	0	+	0
	Tenofovir	TDF	0	0	0	0
	Emtricitabine	FTC	0	0	0	0
NNRTI	Efavirenz	EFV	+/-	+/-	++ increased HDL	+
	Nevirapine	NVP	0	0	+ increased HDL	0
PI	Ritonavir	RTV	+/-	+	+++	++
	Indinavir	IDV	+/-	+	+	+++
	Nelfinavir	NFV	+/-	+	++	+
	Lopinavir	LPV	+/-	+	++	++
	Amprenavir Fosamprenavir	APV FPV	+/-	+	+	+/-
	Saquinavir	SQV	+/-	+	+/-	+/-
	Atazanavir	ATV	0	++	+/-	0
	Darunavir	DRV	0	+	+/-	+/-
Fusion inhibitor	Enfuvirtide	T20	?	?	0	0
CCR5 inhibitor	Maraviroc	MVC	?	?	0	0
Integrase inhibitor	Raltegravir	RAL	?	?	0	0

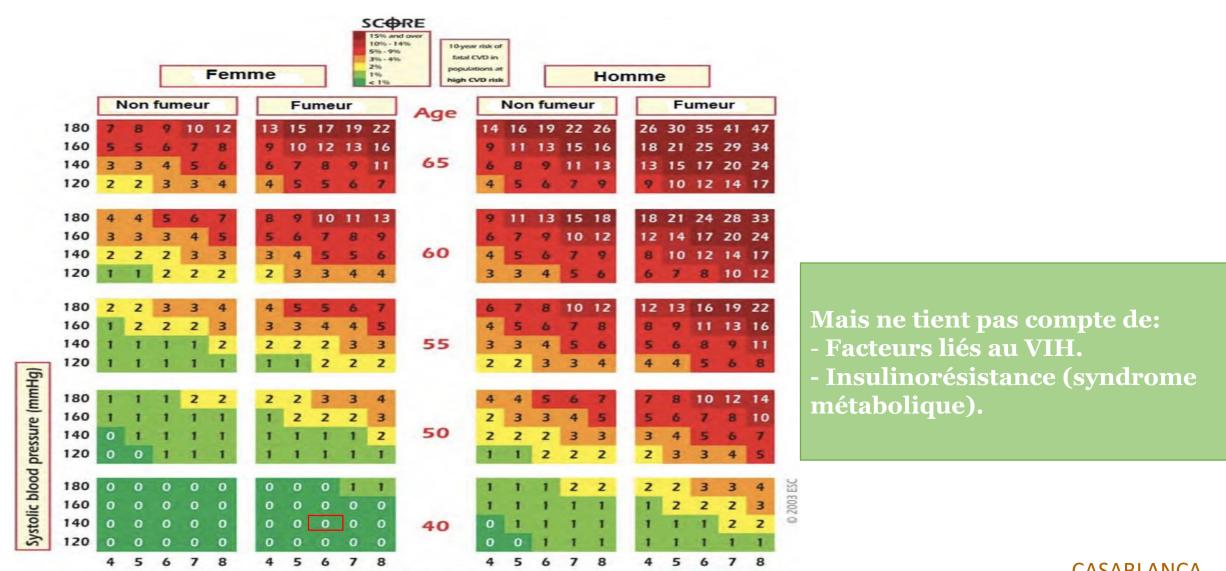
CASABLANCA


Associés aux règles hygiéno-diététiques, vous indiquez

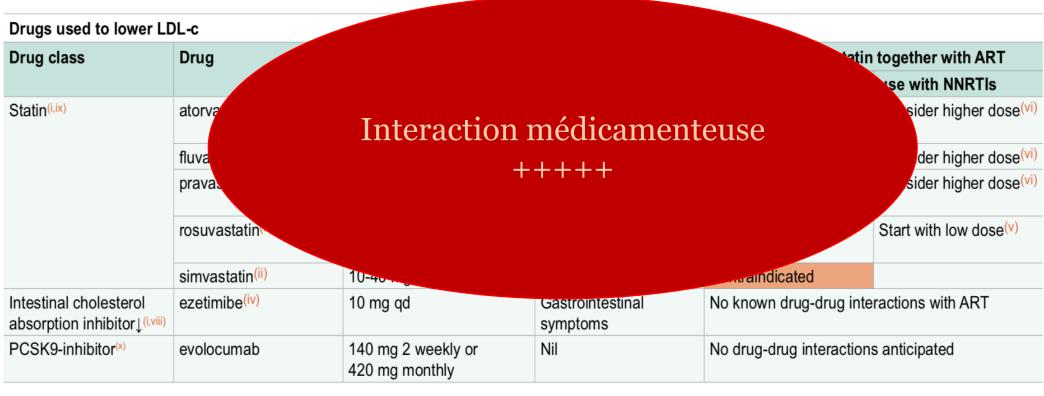
- A- Le remplacement du traitement antirétroviral
- B- L'arrêt du traitement antirétroviral (patiente indétectable depuis 8 ans)
- C- La prescription d'une statine
- D- Un contrôle biologique dans 3 mois
- E- Un bilan thyroïdien

Prevention of CVD

Principles: The intensity of efforts to prevent CVD depends on the underlying risk of CVD, which can be estimated⁽ⁱ⁾. The preventive efforts are diverse in nature and require involvement of a relevant specialist, in particular if the risk of CVD is high and always in persons with a history of CVD.

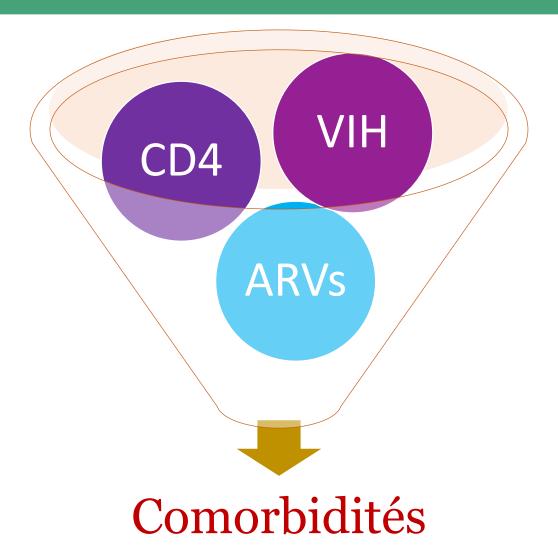


Risque cardioo- vasculaire : Évaluation du risque d'événement cardiovasculaire fatal à 10 ans


150 200 250 300

mg/dL

Cholesterol (mmol/L)



Vous décidez de changer le traitement antirétroviral, quelle combinaison choisissez vous?

- A- Tenofovir/ emtricitabine/efavirenz (Atripla)
- B- Zidovudine/ lamivudine/ atazanavir/ritonavir (combivir+ reyataz/norvir)
- C-Abacavir/lamivudine/ atazanavir/ritonavir (Kivexa+ reyataz/norvir)
- D-Tenofovir/emtricitabine/raltégravir (truvada+isentress)
- E- Dolutégravir/ darunavir/ritonavir (tivicay+prezista+norvir)

Conclusion

